
K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 162–173, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Clustering with Niching Genetic K-means Algorithm

Weiguo Sheng, Allan Tucker, and Xiaohui Liu

Department of Information System and Computing
Brunel University, Uxbridge, Middlesex, UB8 3PH

London, UK
{weiguo.sheng, allan.tucker, xiaohui.liu}@brunel.ac.uk

Abstract. GA-based clustering algorithms often employ either simple GA,
steady state GA or their variants and fail to consistently and efficiently identify
high quality solutions (best known optima) of given clustering problems, which
involve large data sets with many local optima. To circumvent this problem, we
propose Niching Genetic K-means Algorithm (NGKA) that is based on modi-
fied deterministic crowding and embeds the computationally attractive k-means.
Our experiments show that NGKA can consistently and efficiently identify high
quality solutions. Experiments use both simulated and real data with varying
size and varying number of local optima. The significance of NGKA is also
shown on the experimental data sets by comparing through simulations with
Genetically Guided Algorithm (GGA) and Genetic K-means Algorithm (GKA).

1 Introduction

Clustering is useful in exploratory data analysis. Cluster analysis organizes data by
grouping individuals in a population in order to discover structure or clusters in the
data. In some sense, we would like the individuals within a group to be similar to one
another, but dissimilar from individuals in other groups. Various types of clustering
algorithms have been proposed to suit different requirements. For clustering large
data sets, there is a general consensus that partitional algorithms are imperative. Par-
titional clustering algorithms generate a single partitioning, with a specified or esti-
mated number of clusters of the data in an attempt to recover natural groups present
in the data. Among the partitional clustering algorithms, the k-means [5] has been
popularly used because of its simplicity and efficiency. However, it highly depends
on the initial choice of cluster centers and may end up in a local optimum.

A possible way to deal with local optimality of clustering problems is to use sto-
chastic optimization schemes, such as Genetic Algorithms (GAs), which are believed
more insensitive to initial conditions. There have been many attempts to use GAs for
clustering problems. Roughly, the attempts can be classified as GA approaches such
as [12,4,7] and hybrid GA approaches such as [15,9]. In most cases, the above ap-
proaches are reported performing well on small data sets with few local optima. How-
ever, real clustering problems may involve large data sets with many local optima. On
such clustering problems, both GA and hybrid GA approaches can run into problems.
First, they have difficulties in consistently identifying high quality solutions mainly
because they employ either the Simple GA (SGA) [6], the Steady State GA (SSGA)

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Durchschnittliche Neuberechnung Downsample-Auflösung: 1800 dpi Downsampling für Bilder über: 2700 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: NeinSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages false /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Average /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Average /DetectBlends true /GrayImageDownsampleType /Average /PreserveEPSInfo true /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 1800 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Clustering with Niching Genetic K-means Algorithm 163

[16] or their variants, which may suffer from premature convergence to local optima.
Second, they are either very expensive or not efficient enough to identify high quality
solutions.

To overcome these problems, we propose a method called Niching Genetic K-
means Algorithm (NGKA). In NGKA, instead of employing SGA or SSGA, modified
deterministic crowding is proposed and the computationally attractive k-means is in-
corporated. Our experiments show that NGKA can consistently and efficiently iden-
tify high quality solutions of given clustering problems, which involve large data sets
with many local optima. Experiments use both simulated and real data with varying
size and varying number of local optima. The performance of NGKA is also shown
on the experimental data sets by comparing through simulation with Genetically
Guided Algorithm (GGA) [4] and Genetic K-means Algorithm (GKA) [9].

The outline of the paper is as follows. We briefly review deterministic crowding in
section 2. Section 3 provides the details of our proposed NGKA. Data sets employed
in this work are described in section 4. Section 5 contains a description of how vari-
ous parameters for NGKA can be set. Section 6 details the experiments and compares
NGKA against GGA and GKA. Lastly, section 7 presents our conclusions and future
work.

2 Deterministic Crowding

Different niching genetic algorithms have been developed [3,13,10]. In this work we
focus on one niching genetic algorithm known as Deterministic Crowding (DC) [10].
In DC, selection pressure at the selection stage is eliminated by allowing individuals
to mate at random with any other individual in the population. After crossover and
eventually mutation, each child replaces the nearest parent if it has higher fitness. It is
expected DC can maintain the population diversity and permit the GA to investigate
many peaks in parallel. On the other hand, it prevents the GA from being trapped in
local optima of the search space. In this work, we modify the DC and incorporate the
computationally attractive k-means for clustering.

3 Niching Genetic K-means Algorithm

3.1 Algorithm Overview

To consistently and efficiently identify high quality solutions of given clustering
problems, which involve large data sets with many local optima, we propose NGKA
as follows. After initialization, one parent p1 is selected randomly from the popula-
tion, and its mate p2 is selected not from the entire population, but from a group of in-
dividuals called Comparing Factor Group (CFG), picked randomly (without re-
placement) from the population. The one most similar to p1 (e.g., the one whose
cluster centers encoded in the chromosome are the closest to p1’s) is chosen as mate
p2. This procedure is repeated until P/2 parent pairs are selected. Each of these parent
pairs is crossed to form not two but only one single offspring, after undergoing muta-
tion and applying one step of k-means the single offspring is then paired with a more

164 W. Sheng, A. Tucker, and X. Liu

similar parent (a parent whose cluster centers encoded in the chromosome are closer
to the offspring’s), and if the fitness of the offspring is better than its paired parent, its
parent is replaced.

The details of NGKA are shown as below. The algorithm is terminated when the
stopping criterion is met. The output of the algorithm is the best solution encountered
during the evolution.

Step 1. Randomly initialize P sets of k cluster centers using floating-point representa-
tion. Constrain the initial values to be within the space defined by the vectors
to be clustered. Only valid individuals that have at least one data point in each
cluster are considered to be included in the initial population.

Step 2. Calculate MSE according to equation (3) for each individual in the initial
population and set the fitness value as f = 1/MSE.

Step 3. Repeat following (a) to (e) until the stopping criterion is met.
a) One parent p1 is selected randomly from the population, and its mate p2 is

selected from CFG (see section 5 for the size setting). The one most simi-
lar (determined by the Euclidean distance based on phenotypic metric) to
p1 is chosen as mate p2. This procedure is repeated until P/2 parent pairs
are selected.

b) Do real arithmetic crossover on each paired parent to form not two but
only one single offspring with probability of one and then perform Gaus-
sian mutation on each feature of the offspring with some low probability.

c) Run k-means one step on the new offspring and update the offspring (i.e.
each data point in the data set is assigned to its closest cluster center en-
coded in offspring’s chromosome after which the cluster centers are up-
dated as the centers of mass of the data points that are assigned to the
clusters).

d) Compare the offspring with both parents, and paired with a more similar
parent.

e) Calculate MSE′ according to equation (4) for the offspring and set fitness
of the offspring equal to 1/MSE′. If the fitness of offspring is better than
its paired parent, then replace parent.

Step 4. Provide the cluster centers for the terminal population member with the best
fitness.

3.2 Representation

In most of the GA clustering applications, the binary, integer or floating-point repre-
sentation [14,12,2] are commonly used. In the binary and integer representation, bi-
nary codes or integers are usually used to represent the membership or permutation of
data points and cluster assignment is done explicitly based on the value of binary
codes or integers. In most cases, both binary and integer representations suffer from
problems of redundancy and context insensitivity with traditional crossover and mu-
tation methods. Furthermore, they are not a scalable representation for clustering large
data sets due to the length of the genomes. In this work, we use a floating-point pres-
entation, which represents the cluster centers. Cluster assignment is done implicitly
based on distance. In this context, [11] showed that a real-valued representation

Clustering with Niching Genetic K-means Algorithm 165

moves the problem closer to the problem representation which offers higher precision
with more consistent results across replications.

Our representation consists of a vector of k×d features of real numbers, where d is
the number of dimensions in the data and k is the number of clusters. The first d posi-
tions represent the d dimensions of the first cluster center, the next d positions repre-
sent those of the second cluster center, and so on.

3.3 Crossover and Mutation

The crossover and mutation operators are chosen after a number of experimental tri-
als. Arithmetic crossover [11] and Gaussian mutation perform well and are selected as
reproduction operators for NGKA. Traditional arithmetic crossover linearly combines
two parent chromosome vectors to produce two new offspring according to the fol-
lowing equations:

Offspring1 = a*Parent1 + (1- a)*Parent2, (1)

Offspring2 = (1 – a)*Parent1 + a*Parent2. (2)

Where a∈[0,1] is a random weighting factor. In NGKA, we use a = 0.5 as a
weighting factor, however, to produce not two but only one single offspring.

After crossover, a very low probability of Gaussian mutation will apply on the off-
spring. Gaussian mutation adds a unit Gaussian distributed random value to the cho-
sen feature. The new feature value is clipped if it falls outside of the lower or upper
bounds of that feature.

3.4 K-means Hybridization

K-means is an iterative scheme attempting to minimize the sum of squared Euclidean
distances between data points and cluster centers. Let xi i=1,2,…n be the set of n data
points, k, the number of clusters, mj, the centroid of cluster Cj. Then the algorithm
tries to minimize the cost function Mean Square Error (MSE)

MSE ji

n

i

k

Cxj

mx
ji

−∑ ∑
= ∈=

=
2

1 ,1

. (3)

Starting from an initial distribution of cluster centers in the data space, each data
point is assigned to the cluster with closest center, after which each center itself is up-
dated as the center of mass of all data points belonging to that particular cluster. The
procedure is repeated until convergence. This iterative scheme is known to converge
sufficiently fast.

In order to improve computational efficiency dramatically, one step of k-means is
applied to all new offspring during each generation, after the regeneration step. This is
done by assigning each data point to one of the clusters with the nearest centre en-
coded in the individual’s chromosome. After that, the cluster centers encoded in the
chromosome are replaced by the mean points of the respective clusters.

166 W. Sheng, A. Tucker, and X. Liu

3.5 Fitness Function

The fitness calculation of an individual is based on the clusters formed according to
the centers encoded in the chromosome. It was defined as f = 1/MSE, in which MSE is
computed according to equation (3), so that maximization of the fitness leads to
minimization of MSE.

During our experiments, sometimes the resulting individuals may represent a par-
titioning with empty clusters (called illegal individuals). To penalize illegal individu-
als, we use the following heuristic proposed in [4]. If a partitioning, defined by its
cluster centers, has b clusters with no data points assigned to them and the MSE value
for the partitioning evaluates to a value Tot, the new value will be (b+1)*Tot. The re-
sulting fitness function will be f = 1/MSE′ where

MSE' = MSE + b*MSE, (4)

b∈{0,…,k} is the integer number of empty clusters. The heuristic penalizes illegal
partitionings by decreasing their fitness value. This makes them less likely to replace
paired parents and less likely to enter the population pool for the next generation.

4 Data Set Description

4.1 Simulated Data

The simulated data created for our study comprises 3,300 data points with nine clus-
ters. The nine clusters are generated according to a spherical bivariate normal distri-
bution with given mean vector u=(ux,uy) and standard deviation σ for both x and y ac-
cording to:

Cluster1: 300 objects ux = 1.0 uy = 0.5 σ = 0.2
Cluster2: 300 objects ux = 2.0 uy = 0.5 σ = 0.2
Cluster3: 600 objects ux = 5.0 uy = 0.5 σ = 0.6
Cluster4: 600 objects ux = 1.5 uy = 3.0 σ = 0.6
Cluster5: 300 objects ux = 4.2 uy = 3.5 σ = 0.2
Cluster6: 300 objects ux = 5.5 uy = 3.5 σ = 0.2
Cluster7: 300 objects ux = 3.5 uy = 2.0 σ = 0.8
Cluster8: 300 objects ux = 3.0 uy = -1.0 σ = 0.7
Cluster9: 300 objects ux = 3.0 uy = 5.0 σ = 0.7

4.2 Subcellcycle Data

The subcellcycle is a subset of the yeast cell cycle data set provided by [1]. The yeast
cell cycle data set contains time-course expression profiles for more than 6220 genes,
with 17 time points for each gene taken at 10-min intervals covering nearly two yeast
cell cycles (160min). This data set is very attractive because a large number of genes
contained in it are biologically characterized and have been assigned to different
phases of the cell cycle. The subcellcycle data used in this work consists of 384 genes
whose expression levels peak at different time points corresponding to the five phases

Clustering with Niching Genetic K-means Algorithm 167

(early G1, late G1, S, G2 and M) of cell cycle. We expect clustering results to ap-
proximate this five-class partitioning.

4.3 Serum Data

This data set is described and used in [8] and corresponds to the selection of 517
genes whose expression vary in response to serum concentration in human fibroblasts.
Here, we expect eight clusters from it.

Both gene data sets are normalized so that every gene has an average expression
value of zero and a standard deviation equal to one. Normally, to measure the dis-
similarity between two genes one tends to choose correlation coefficients which cap-
ture the similarity of the “shapes” of two expression profiles, and ignores differences
between their magnitudes. However, Euclidean distance metric is used for all results
reported here since it has been shown that the correlation coefficient and Euclidean
distance are equivalent on a standardized gene expression data set [17].

5 Parameters Configuration

Before running NGKA, there are some parameters that need to be set including the
crossover probability, mutation rate, population size, stopping criterion and Compar-
ing Factor Group (CFG) size.

The crossover probability (pc) is set to 100%. Normally one tends to choose a
lower value for the crossover probability in order to allow individuals to survive from
one generation to the other. However, in NGKA we have found that a crossover rate
of 95-100% offers best results, since only better offspring can replace its paired parent
so the individuals with highest fitness will survive multiple generations. The mutation
probability (pm) is set at 0.01. Mutation is useful to allow individuals to explore other
areas that haven’t been explored by the algorithm.

For population size setting, we find NGKA performs well on a generally small
population size. However, a too small population would heavily retard the search
ability of NGKA. Based on trial runs, we find a population size of 50 for simulated
data and subcellcycle data (with 10s to 100s local optima), 75 for serum data (with
100s to 1000s local optima) to be acceptable lower limit, and better performance can
be obtained by using a large population size.

Our stopping criterion for NGKA is that the fitness value of the best population
member has not changed for n generations, with n=10 being a reasonable choice for
NGKA on all the three experimental data sets.

A final variable that needs to be set is the CFG size. The idea of using CFG is to
get a group that will likely contain an individual from the same niche of the first par-
ent. However, an appropriate value should be set to allow both thorough exploration
of the search space and competition between different niches. When the group size
value equals one, it is basically random selection. As the group size increases there is
more possibility of selecting a mate from the same niche as the first parent. For our
experimental data sets, the CFG size for NGKA has been determined empirically. We
use CFG=20%*P, where P is the population size.

168 W. Sheng, A. Tucker, and X. Liu

6 Experiments

In order to be of real use, the solutions supplied by a clustering algorithm must be of
high quality (i.e. best known optima) and discovered within a reasonable time. More
importantly, to have confidence in the clusters supplied by a clustering algorithm, the
algorithm must consistently deliver such high quality solutions. In this respect, we
compare the performance of NGKA with the recently proposed GGA and GKA in
terms of consistency and efficiency of identifying high quality solutions both on
simulated and real data. As well as fitness value, we report the MSE value for all ex-
periments. This allows us to compare performance of the different algorithms with
similar but different fitness functions. All results reported in this section were ob-
tained on a PC with AMD Athlon 1800 running Windows2000 operation system.

We are primarily interested in clustering problems that involve large data sets with
many local optima. In order to determine the exact number of different optima of
clustering the above three data sets, one would in principle be required to start a local
search algorithm such as k-means from every possible initial configuration of the
cluster centers. However even if we restrict the experiment to consider only the con-
figurations where each cluster center is initially placed in one of the data points, there
would still be too many initial configurations to be tested. Therefore we run 5000 tri-
als of k-means using random initial configuration on each of the three data sets. There
are 395, 71 and 965 different optima found on simulated data, subcellcycle data and
serum data respectively. And more trials lead to more different optima, for example
1324 optima found out of 10,000 trials on serum data, figure 1 plots all 1324 different
optima associated with the final partitionings. The figure also illustrates that k-means
is very far from being a consistent technique to identify high quality solutions. Since
it has been reported in [4] and [9] that GGA and GKA outperform k-means, we will
not consider k-means for further comparison.

Fig. 1. All of the 1324 different optima with MSE value found by applying k-means 10,000 tri-
als on serum data

Before comparing the performance of the three algorithms, we give a brief de-
scription of the GA used in GGA and GKA. In GGA, a GA based on tournament se-
lection, two-point crossover and flip bit mutation is applied with binary gray coding
for clustering. The GA used in GKA is based on roulette wheel selection and a biased
mutation with string-of-group-number coding which is one kind of integer represen-

Clustering with Niching Genetic K-means Algorithm 169

tation discussed in section 3.2. Moreover GKA uses one step of k-means instead of
the traditional crossover operators, which we think may restrict the GA’s search capa-
bility. A further investigation is out of the scope of this paper.

To make the comparison between the three algorithms more meaningful, the same
stopping criterion (i.e. the fitness value of the best population member has not
changed for n generations) is used for all experiments. And a reasonable n value is set
to be n=10 for GKA and n=80 for GGA on all the three experimental data sets. The
remaining parameters of GGA and GKA are set in table 1. The population size of
GGA and GKA on the three data sets is identical to that in NGKA. Other parameters
(crossover rate, mutation rate and order of tournament) of GGA and GKA are speci-
fied according to the original papers for best performance.

Table 1. Population size, crossover rate, mutation rate and order of tournament setting of the
three algorithms (GGA, GKA and NGKA) for tests on three experimental data sets (data1: si-
mulated data, data2: subcellcycle data, data3: serum, P is the population size and bits is the
number of bits in an individual [4])

Algorithm
Parameter

GGA GKA NGKA
Data1 Data2 Data3 Data1 Data2 Data3 Data1 Data2 Data3Population

size 50 50 75 50 50 75 50 50 75

Crossover
rate (Pc)

0.9 N/A 1.0

Mutation
rate (Pm) 1.75/(P×)(bits) 0.05 0.01

Order of
tournament

2 N/A N/A

To compare performance of the three algorithms in terms of consistency and effi-
ciency of identifying high quality solutions, we recorded the average MSE value,
standard deviation, distribution of the optima and average run time to identify the
high quality solution found from tests on the three data sets. The average MSE values
and corresponding standard deviations are obtained by generating 20 random starting
populations, and running each experiment once with each of the 20 random starting
populations. While the average run time to identify the high quality solution is ob-
tained by running each experiment iteratively with each of the 20 random starting
populations until a high quality solution is identified. All the results were then aver-
aged over the 20 trials. All sets of experiments use the same 20 random starting
populations. Table 2 lists the average values of MSE and standard deviation found
from the tests. Figures 2, 3 and 4 show the distribution of different optima found out
of 20 trials on the three data sets respectively. The results of average running time to
identify the high quality solution are shown in table 3.

The reason for using simulated data set in this work is that the structure is known a
priori, thus enabling a better validation of the algorithm proposed here. Furthermore,
the bivariate simulated data allows us to graphically display the clustering results. So,
here we will examine the experimental results on simulated data first. In terms of con-
sistency, figure 2 shows that NGKA consistently identifies the best known optimum
with MSE=1516.41 in each of 20 trials. However GGA and GKA can only identify

170 W. Sheng, A. Tucker, and X. Liu

Table 2. Comparing average MSE values and standard deviation found by the three algo-
rithms(GGA, GKA and NGKA) on simulated data, subcellcycle data and serum data. The re-
sults are averaged over the 20 trials

Simulated data Subcellcycle data Serum data
Algorithm

MSE St.dv. MSE St.dv. MSE St.dv.
GGA 1573.23 45.89 2361.12 12.15 1511.79 8.28
GKA 1548.32 29.89 2350.22 5.52 1507.65 6.74

NGKA 1516.41 0.0 2345.56 0.0 1500.84 0.11

Fig. 2. Distribution of the optima with MSE value found for 20 trials of GGA, GKA and
NGKA on simulated data

Fig. 3. Distribution of the optima with MSE value found for 20 trials of GGA, GKA and
NGKA on subcellcycle data

the best known optimum 2 times and 5 times respectively. Two typical local optima
that were identified by GGA and GKA are MSE=1543.08 and MSE=1556.13. Figure
5(a) and 5(b) show the simulated data and its best known optimum clustering result
(different clusters represented by different symbols). The two local optima and their
corresponding clustering results are shown in figure 5(c) and 5(d) respectively. We
can see that the two local optima cannot succeed in finding the correct clusters, as two
clusters at the lower-left corner are joined together (represented by ‘∆’ in figure 5(c)
and ‘+’ in figure 5(d)) while one other cluster is split up. In terms of efficiency, table
3 shows that to identify the best known optimum, by average, GGA needs 6945.2
seconds, which is around 118 times longer than that of NGKA. GKA is quite efficient
and takes only 169.2 seconds, however it is still more than 3 times longer than that of
NGKA.

Clustering with Niching Genetic K-means Algorithm 171

Fig. 4. Distribution of the optima with MSE value found for 20 trials of GGA, GKA and
NGKA on serum data

Table 3. Comparing average run time to identify the high quality solution found by the three
algorithms (GGA, GKA and NGKA) on simulated data, subcellcycle data and serum data. The
results are averaged over the 20 trials

Average run time to identify the high quality solution (seconds)
Algorithm

Simulated data Subcellcycle data Serum data
GGA 6945.2 3805.3 12587.4
GKA 192.7 72.1 281.6

NGKA 58.6 29.7 92.1

Testing on subcellcycle gene expression data (Table 2 and Fig 3), GGA also takes
a long time and result in ave.MSE=2361.12 with std.dev=12.15. Out of 20 trials, it
identifies the best known optimum 4 times with MSE=2345.56. When applying GKA,
the computational efficiency is significantly improved. On average it takes 72.1 sec-
onds to identify the best known optimum and achieves ave.MSE=2350.22 with
std.dev=5.52. However, out of 20 trials, it only identifies the best known optimum 6
times. Experiments using NGKA show that the computational efficiency of identify-
ing the best known optimum is even more improved with only 29.7 seconds. More
importantly, the average MSE value and standard deviation are improved to
ave.MSE=2345.56 with std.dev=0.0, which means the best known optimum is con-
sistently identified in each of 20 trials. Testing on serum gene expression data (Table
2 and Fig 4), similar results are obtained. Out of 20 trials, NGKA successfully identi-
fies the best known optimum 18 times with MSE=1500.82. However, GGA and GKA
can only identify it 3 times and 5 times respectively. Clearly, based on the experi-
ments both on simulated and real data NGKA is the best alternative as it consistently
delivers high quality clustering solutions faster.

7 Conclusions and Future Work

In this work, we considered the clustering problem of identifying high quality solu-
tions (best known optima) of given data sets, which involve in large data sets with
many local optima. We propose NGKA to solve the problem consistently and effi-
ciently. For clustering of small data sets with few local optima, all GGA, GKA and

172 W. Sheng, A. Tucker, and X. Liu

Fig. 5. (a) Random generated simulated data. (b) Clustering results corresponding to the best
known optimum with MSE=1516.41. (c) Clustering results corresponding to the local optimum
with MSE=1543.08. (d) Clustering results corresponding to the local optimum with
MSE=1556.13

NGKA perform well. However, as the size of data sets and corresponding number of
local optima increase, the picture changes drastically: GGA becomes very expensive
and both GGA and GKA have difficulties in consistently identifying high quality so-
lutions. However, our proposed NGKA can identify high quality solutions faster and
more importantly, it can consistently deliver such high quality solutions.

The work presented here represents the first attempt to consistently and efficiently
cluster gene expression data sets. Our promising results lead us to believe that NGKA
can be extended to a class of real world large clustering problems where other meth-
ods have not been appropriate.

Clustering with Niching Genetic K-means Algorithm 173

Future work will involve the analysis of biological significance of the clustering
results found by NGKA based on biological knowledge. A dynamic NGKA clustering
which does not require prior specification of the number of clusters will also be in-
vestigated, involving perhaps a fitness function which maximizes both the homoge-
neity within each cluster and the heterogeneity among clusters.

References

1. Cho, R.J. et al.: A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle. Mo-
lecular Cell 2(1) (1998) 65-73

2. Cucchiara, R.: Genetic Algorithms for Clustering in Machine Vision. Machine Vision and
Applications, Vol. 11, No.1 (1998) 1-6

3. Goldberg, D.E. and Richardson, J.: Genetic algorithms with sharing for multimodal func-
tion optimization. Proceeding of the 2nd Int. Conference on Genetic Algorithms. Hillsdale,
New Jersey (1987) 41-49

4. Hall, L.O., Ozyurt, B. and Bezdek, J.C.: Clustering with a Genetically Optimized Ap-
proach. IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2 (1999) 103-112

5. Hartigan, J.A. and Wong, M.A.: A k-means clustering algorithm. Applied Statistics, 28
(1979) 100-110

6. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

7. Eduardo, R. Hruschka and Nelson, FF Ebecken: A genetic algorithm for cluster analysis.
Intelligent Data Analysis 7 (2003) 15-25

8. Iyer V.R. et al.: The Transcriptional Program in the Response of Human Fibroblasts to Se-
rum. Science, 283 (1999) 83-87

9. Krishna, K. and Murty, M. Narasimha: Genetic K-means Algorithm. IEEE Transactions on
Systems, Man and Cybernetics, Part B: Cybernetics, Vol. 29, No. 3 (1999)

10. Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. dissertation, Univ. of Illi-
nois, Urbana-Champaign (1995)

11. Michalewicz, Z.: Genetic algorithms + Data structure = Evolution programs. 3rd edn.
Springer-Verlag, Berlin Heidelberg New York (1996)

12. Murthy, C.A. and Chowdhury, N.: In search of optimal clusters using genetic algorithms.
Pattern Recognition Letters, 17 (1996) 825-832

13. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. Proceed-
ing of IEEE Int. Conf. Evolutionary Computation (1996) 798-803

14. Sarkar, M., Yegnanarayana, B. and Khemani, D.: A Clustering Algorithm Using an Evo-
lutionary Programming-based Approach. Pattern Recognition Lett. 18 (1997) 975-986

15. Scheunders, P.: A genetic c-means clustering algorithm applied to color image quantiza-
tion. Pattern Recognition, Vol. 30, No. 6 (1997) 859-866

16. Syswerda, G.: A study of reproduction in generational and steady-state genetic algorithms.
In Foundations of Genetic Algorithms, Morgan Kauffmann Publishers (1991) 94-101

17. Yeung, K.Y.: Clustering analysis of gene expression data. PhD Thesis, University of
Washington (2001)

	1 Introduction
	2 Deterministic Crowding
	3 Niching Genetic K-means Algorithm
	3.1 Algorithm Overview
	3.2 Representation
	3.3 Crossover and Mutation
	3.4 K-means Hybridization
	3.5 Fitness Function

	4 Data Set Description
	4.1 Simulated Data
	4.2 Subcellcycle Data
	4.3 Serum Data

	5 Parameters Configuration
	6 Experiments
	7 Conclusions and Future Work
	References

